Transforming Wikipedia into an Ontology-based Information Retrieval Search Engine for Local Experts using a Third-Party Taxonomy
نویسندگان
چکیده
Wikipedia is widely used for finding general information about a wide variety of topicss. Its vocation is not to provide local information. For example, it provides plot, cast, and production information about a given movie, but not showing times in your local movie theatre. Here we describe how we can connect local information to Wikipedia, without altering its content. The case study we present involves finding local scientific experts. Using a third-party taxonomy, independent from Wikipedia’s category hierarchy, we index information connected to our local experts, present in their activity reports, and we re-index Wikipedia content using the same taxonomy. The connections between Wikipedia pages and local expert reports are stored in a relational database, accessible through as public SPARQL endpoint. A Wikipedia gadget (or plugin) activated by the interested user, accesses the endpoint as each Wikipedia page is accessed. An additional tab on the Wikipedia page allows the user to open up a list of teams of local experts associated with the subject matter in the Wikipedia page. The technique, though presented here as a way to identify local experts, is generic, in that any third party taxonomy, can be used in this to connect Wikipedia to any non-Wikipedia data source.
منابع مشابه
Advertising Keyword Suggestion Using Relevance-Based Language Models from Wikipedia Rich Articles
When emerging technologies such as Search Engine Marketing (SEM) face tasks that require human level intelligence, it is inevitable to use the knowledge repositories to endow the machine with the breadth of knowledge available to humans. Keyword suggestion for search engine advertising is an important problem for sponsored search and SEM that requires a goldmine repository of knowledge. A recen...
متن کاملReview of ranked-based and unranked-based metrics for determining the effectiveness of search engines
Purpose: Traditionally, there have many metrics for evaluating the search engine, nevertheless various researchers’ proposed new metrics in recent years. Aware of this new metrics is essential to conduct research on evaluation of the search engine field. So, the purpose of this study was to provide an analysis of important and new metrics for evaluating the search engines. Methodology: This is ...
متن کاملA Comparing between the impacts of text based indexing and folksonomy on ranking of images search via Google search engine
Background and Aim: The purpose of this study was to compare the impact of text based indexing and folksonomy in image retrieval via Google search engine. Methods: This study used experimental method. The sample is 30 images extracted from the book “Gray anatomy”. The research was carried out in 4 stages; in the first stage, images were uploaded to an “Instagram” account so the images are tagge...
متن کاملSemantic Information Retrieval based on Wikipedia Taxonomy
Information retrieval is used to find a subset of relevant documents against a set of documents. Determining semantic similarity between two terms is a crucial problem in Web Mining for such applications as information retrieval systems and recommender systems. Semantic similarity refers to the sameness of two terms based on sameness of their meaning or their semantic contents. Recently many te...
متن کاملModeling Search Engine ’ s Explorations in Dynamic Search : An Ontological Perspective
Dynamic search is an information retrieval task, in which information systems retrieve documents for a user’s multiple queries. Each query starts a search iteration and aims to fulfill part of the user’s information need. Modeling search engine’s explorations in dynamic search serves to help search engines explore in the information space, retrieve relevant documents and fulfill the user’s info...
متن کامل